skip to main content


Search for: All records

Creators/Authors contains: "Liu, Yihan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper reports the fabrication of silicon PN diode by using DNA nanostructure as the etching template for SiO2and also as then-dopant of Si. DNA nanotubes were deposited ontop-type silicon wafer that has a thermal SiO2layer. The DNA nanotubes catalyze the etching of SiO2by HF vapor to expose the underlying Si. The phosphate groups in the DNA nanotube were used as the doping source to locallyn-dope the Si wafer to form vertical P-N junctions. Prototype PN diodes were fabricated and exhibited expected blockage behavior with a knee voltage ofca.0.7 V. Our work highlights the potential of DNA nanotechnology in future fabrication of nanoelectronics.

     
    more » « less
    Free, publicly-accessible full text available February 21, 2025
  2. Abstract

    Breath ammonia is an essential biomarker for patients with many chronic illnesses, such as chronic kidney disease (CKD), chronic liver disease (CLD), urea cycle disorders (UCD), and hepatic encephalopathy. However, existing breath ammonia sensors fail to compensate for the impact of breath humidity and complex breathing motions associated with a human breath sample. Here, a multimodal breath sensing system is presented that integrates an ammonia sensor based on a thermally cleaved conjugated polymer, a humidity sensor based on reduced graphene oxide (rGO), and a breath dynamics sensor based on a 3D folded strain‐responsive mesostructure. The miniaturized construction and module‐based configuration offer flexible integration with a broad range of masks. Experimental results present the capabilities of the system in continuously detecting diagnostic ranges of breath ammonia under real, humid breath conditions with sufficient sensing accuracy and selectivity over 3 weeks. A machine‐learning algorithm based on K‐means clustering decodes multimodal signals collected from the breath sensor to differentiate between healthy and diseased breath concentrations of ammonia. The on‐body test highlights the operational simplicity and practicality of the system for noninvasively tracing ammonia biomarkers.

     
    more » « less
    Free, publicly-accessible full text available February 10, 2025
  3. A microfolding strategy realizes kirigami at nanoscale to form 3D shape-morphable microelectronic systems in freestanding forms. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Objective and Impact Statement . Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. Introduction . Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. Methods . Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. Results . The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. Conclusion . The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare. 
    more » « less
  6. Abstract Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at  √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses. 
    more » « less